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AN ESTIMATE OF THE EFFECT OF 
BACK SPIN ON THE CRITICAL ANGLE IN 

THE UNYAWED RICOCHET OF A CYLINDER 
V. L. Bait$ W. Johnsont5 

A method is described for giving an estimate of the effect of back spin on the critical angle for the ricochet of a 
cylinder off water. The method incorporates both the spin and the weight of the projectile into the Birkhoff et al 
theory, as described by Johnson and Reid (1)” for a sphere. The differences and predictions concerning hydrodynamic 
pressure and lift, etc., are compared with those made by several other authors. A comparison of our new results with 

some available experimental results has also been made. 

1 INTRODUCTION 

The ricochet of solid projectiles off water at certain 
impact angles is a mechanical phenomenon that is both 
highly amusing and highly serious. In the second World 
War, Sir Barnes Wallis found the phenomenon basic to 
his design of the bouncing bomb. In particular, he intro- 
duced back spin at the time of release of the bomb in 
order to enhance its chance of success in attacking the 
Mohne dams (2)(3). 

It is known that back spin can increase the critical 
impact angle for successful ricochet, which increases the 
probability of a bouncing bomb hitting its target. How- 
ever, there is no wholly satisfactory theory for predicting 
the influence of back spin. Johnson and Reid in their 
review (1) applied the Birkhoff theory to the ricochet of a 
spherical projectile off water, and demonstrated that it is 
in good agreement with the known empirical expression 
for critical impact angle 

8, = 18”/Ja (1) 
(r is the projectile specific gravity. They did not, however, 
show how to incorporate spin into the theory. 

Hutchings, in his paper (4), argued that the Birkhoff 
theory cannot predict that spin will have any effect on 
the tendency of a sphere to ricochet and that it is in- 
capable of explaining the benefit which Wallis appears to 
have gained by imparting spin. Accordingly, the Birkhoff 
pressure expression 

p = ipu’ cos2 p (2) 
was assumed to be physically unrealistic; p denotes press- 
ure, p density of water, u the projectile velocity, and jl the 
angle between the normal to the surface element and the 
velocity vector. 

In this paper a comparison is made of Johnson and 
Reid’s approach, referred to as the Birkhoff theory, with 
that of Hutchings. The focus of attention is on Hutchings’ 
assumptions about the pressure distribution formula 
and the ‘wetted’ area of the projectile. It may be shown 
that the velocity combination rule adopted by Hutch- 
ings, which is valid kinematically, is not suitable for 
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dynamic pressure calculations. As based on the former it 
was asserted that the Birkhoff formula was incapable of 
explaining the spin effect. By utilizing an exact, ideal, 
incompressible fluid flow solution and the empirical 
Birkhoff formula, the present paper establishes an ap- 
proximate pressure expression from which a formula is 
obtained for the critical impact angle of ricochet. Both 
spin effect and the weight of the projectile are included in 
the latter formula. Some discussion and estimates of the 
magnitude which spin effects make are presented below. 

Notation 
Radius of cylinder 
Gravitational acceleration 
Pressure 
Cylindrical coordinates 
Time 
Projectile velocity 
Flow velocity 
Angle between normal to surface element and 
velocity of projectile 
Critical impact angle 
Density of water 
Specific gravity of projectile 
Angular variable 
Flow potential 
Angular velocity 
Lift 

2 BASIC ASSUMPTIONS 

For calculating the pressure exerted on the surface of a 
submerged cylinder, instead of the formula (2) proposed 
by Birkhoff et ul. (l), Hutchings (4) introduced Rayleigh’s 
expression 

n cos /3 
* pu2 

= 4 + n cos B 
but modified it to 

n cos B 
p = -  PU2 5 

(3) 

(4) 

Rayleigh’s formula is for the mean pressure on a flat 
lamina in an oblique stream (see Fig. 1). Lacking an 
exact formula for the pressure distribution on the surface 
of a cylinder partly submerged in water, Hutchings’ ap- 
proach was commendably novel. 
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lmpinging liquid 

Flat lamina 

Fig. 1. A representation of the flow field for the Rayleigh formula 
(3) 

Furthermore, Hutchings used the combination rule for 
velocities 

(u‘)’ = (u + aw cos 4)’ + (am sin #I)’ ( 5 )  
where u’ denotes the total velocity of a surface element, u 
the translational component, w the angular velocity, a 
the radius of the cylinder, and #I the angle shown in 
Fig. 2. Also, this rule was applied to the pressure formula 
(2) assuming aw/u to be small and the second order 
quantity, (am/u)*, negligible; the spin itself caused no 
change in lift (see Fig. 2). Thus it was asserted that the 
Birkhoff theory was incapable of explaining spin effect. 
However, as will be shown in the next section this 
reasoning is questionable. 

When Hutchings combined the velocity combination 
rule (5 ) ,  with the corresponding change in angle, p, into 
his pressure formula (4), he found it to underestimate the 
lift of a fully submerged cylinder due to spin. The lift he 
gave was 

&sapa2mu 

2lrpa2wu 

whereas the exact solution of fluid dynamics (4) .is 

N 
z 

4 
\Q 

Even though only the leading surface was taken into 
account in his analysis, requiring a doubling of the value 
in 76), the lift due to spin given by Hutchings is still only 
one eighth that in (7). 

Another difficulty arises concerning the so-called 
‘wetted’ area. Hutchings supposed that the ‘wetted‘ area, 
or the area over which pressure was exerted by the fluid 
was 240, not 4o (see Fig. 2). 

His argument was that for a cylinder impinging 
obliquely on water, the pressure exerted must act over a 
considerable area because of the splash created. But from 
ricochet photographs the splash is evidently very differ- 
ent in character from that of the fluid beneath the sur- 
face. Some authors have specifically remarked that the 
pressure in the splash is effectively atmospheric (5). 

By adopting 2#10 rather than #Io a pressure and lift is 
found by Hutchings’ approach which is higher than that 
given by Birkhoff using just the angle 4o (see Figs 3 and 
4). Roughly speaking, the lift given by Hutchings’ as- 
sumptions is about double that given by Birkhoff et al. 

In summary, the essence of ricochet analysis turns less 
on how to define the relationship between wetted area 
and pressure than on the choice of the pressure formula. 

Water surface I .  1 I Y  

\ I 

Cylinder-p 

Fig. 2. The plan view of a partially submerged cylinder defining 
angles 4 and 4,, 
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Fig. 3. Dimensionless pressure versus 8, the angle between the 
normal to a surface element and the velocity of the projectile 
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Fig. 4. Dimensionless lift integral versus angle 4 

Based on the above arguments, an alternative ap- 
proach is proposed below. The basic assumptions in- 
volved are : 

(1) ideal incompressible fluid, 
(2) a wetted angle over which the pressure acts of &, , 
(3) a pressure exerted on the surface of a submerged 
translationally moving cylinder described by (2). 

3 THE BASIC EQUATION 

In this section we first outline the solution for flow over a 
cylinder, moving with a velocity u perpendicular to its 
length and rotating with angular velocity o around its 
axis (6). We have, 

5 . i i e  = i i * i i , + w a  (9) 

where ij is the mean flow velocity vector, r and 8 the polar 
coordinates, and ii is the vector normal to the surface of 
the cylinder. From potential flow theory the potential, 0, 
and velocity, 6, are 

La 

and 

V = grad @ 

2 
= (;) (is . fir)& 

Because the fluid at infinity is at rest, Cauchy’s theorem 
leads to 

P 02 a@ 
P 2 at 
- =  ---- 

Considering the moving coordinates to have the same 
velocity ii, then 

where D/Dt refers to Lagrangian differentiation. By 
combining (12) and (14), the pressure acting on the sur- 
face of the cylinder moving with constant translational 
velocity, u, and angular velocity, o, becomes 

(2u sin 8 + ma)’ u2 1 
2 2  

- _ _ -  - 

When oa  4 u, this pressure can be expressed as 

2u2 sin’ 8 - 2uwa sin 8 (16) P u2 
P 2  
_ - _ _  - 

At this point it is worth noting the unsuitability of the 
velocity combination rule for determining the dynamic 
pressure expression in a fluid. Principally, it is that in any 
dynamic pressure expression-that of either Bernoulli or 
Rayleigh-the velocity, u, is treated as the upstream vel- 
ocity or the translational velocity of the object. If there is 
some change in the velocity of the fluid or object, only 
the corresponding potentials can be linearly superposed 
and then used to calculate the new velocity field and 
pressure according to the new velocity field. If in an in- 
finite fluid the translation and spin are combined by a 
velocity combination rule and the pressure formula for 
the translational movement is used, the result is different 
from the exact expression (15). 

In the case of a fully submerged cylinder the‘total 
pressure, consisting of both translation and spin effects, is 
expressed in (16). Reverting to (15), it is seen that the term 
214 sin 8 couples the translation and spin effects. In order 
to obtain a simple approximate formula appropriate to a 
partially submerged cylinder, it is assumed in the present 
case that there is an undetermined coupling term instead 
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of 2u sin 6. When ao  6 u, the pressure expression be- 
comes 

p u2 1 
P 2 2  

(c  + - -  _ - _ -  

coa 
u2 c2 

- 2  2 
‘ v -_ - -  

Supposing that the formula (2) applies for a partially 
submerged cylinder without spin, comparing (2) and (17) 
then gives 

(18) c2 = u2 sin2 e 
Thus, the pressure expression becomes 

U’ _ - -  - 
P 2  

cos2 e - wau sin e 

(6 is the angle between the normal to the surface and the 
velocity vector, u.) 

The lift for a just fully submerged cylinder, from (1 9), is 

+apa2wu (20) 
which is about four times Hutchings’ value, but still only 
one half the exact value (7) for infinite immersion, when 
adding the rear surface effect. 

4 THE CRITICAL RICOCHET EQUATION 

Using the pressure formula (19), the lift dL on an arc 
element dl is 

dL = p cos dl 

= p - sin2 C#J + wau cos C#J cos C#J dl (21) 

supposing that the impact angle is very small or that the 
velocity, u, is nearly parallel to the horizontal. If the 
wetted area over which pressure applies is defined as 
(0, do) (see Fig. 2), then the lift exerted on unit length of 
cylinder becomes (Fig. 4) 

(: ) 

L = r d L  

Taking the weight of the projectile into account, the 
vertical motion of the cylinder is governed by 

d2Y -p’xa2 7 = L - p’aa2g dt 

where p‘ denotes the density of the projectile and g is the 
gravitational acceleration. 

By following the procedure given in (2) and supposing 
that the projectile velocity remains constant during rico- 
chet, integration of (23) gives the critical impact angle as 

with 

1 
@o = & 

0 0.6 
oag 

U 2  

Fig. 5. Inter-relationship between back spin, weight, cylinder 
radius, and velocity of projectile for ricochet 

the critical impact angle without spin. It is obvious from 
(24) that back spin would increase the critical impact 
angle and top spin decrease it. 

For comparison, Hutchings results are 

e; = e;, ,,( 1 + 11 --) a o  

and 

8 
750 

e;.H =- 

the latter is the critical impact angle without spin given 
by Hutchings. Seemingly (24) predicts a much greater 
spin effect than does (26). 

Figure 5 shows the relationship between weight, back 
spin, and velocity of projectile for critical ricochet. In the 
shaded area, i.e. 

ma 40ag 1 
u u2 8 

->--- 

critical ricochet can occur, and the heavier the projectile, 
the larger the back spin contribution needed for critical 
ricochet. A given spin and weight are more important the 
lower the impact speed. 

5 EXPERIMENTAL COMPARISON 

There appears to be no exact measurement available of 
the spin effect in ricochet, so that it is hard to make a 
sound judgement about the validity of the formulae pre- 
viously proposed. From certain practical circumstances 
evidence is, however, available and sheds some light on 
this particular issue. Hence, in this section two examples 
are examined and the effect of spin is estimated using our 
proposed formula and comparing it with the practical 
results available. 
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The first example pertains to Wallis's bouncing bomb 
with the data quoted in (4). Slightly simplified, the diam- 
eter and density of the bomb are taken to be 1.27 m and 
2.17 g / m -  ', respectively, the velocity approximately 
110 m/s-', the minimum impact angle 10 degrees, and 
the spin at release of the bomb 52 rad/s-', i.e., about 8-5 
revolutions per second. From this data it is clear that the 
weight of the bomb can be ignored. If there was no spin, 
equation (25) would give - 13.5 degrees as the critical 
impact angle. Considering air resistance and the rough- 
ness of the sea surface, and since 10 degrees was the 
minimum impact angle, it was necessary to make use of 
back spin at the time of release of the bomb. 52 rad/s-' 
back spin and 110 m/s- ' projectile velocity give the term 
(wa)/u - 1/3. Hutchings obtained 16 degrees as the criti- 
cal impact angle with equation (26) whereas (24) gives 
this critical impact angle as 25 degrees. The latter result 
thus suggests that the chance of a successful ricochet is 
improved and that a bomb could successfully attack 
dams. 

Another example concerns an experiment comparing 
no spin and uncontrolled spin tests carried out by Soli- 
man, Johnson, and Reid (7). In their tests it was shown 
that a steel spherical projectile ricochets off water with 
no spin or uncontrolled spin. They found about 1 degree 
difference in critical impact angle at about 6 degrees and 
about 160 ft/s projectile velocity. If the uncontrolled top 
spin peripheral velocity is one or two orders of mag- 
nitude less than the projectile velocity, then the spin 
would be 

ma (i) if - - then o - 100 rad/s-' 
U 

- 16 revs/s (29) 
and 

(ii) if - - lo-', then o - 1000 rad/s-' 
WU 

U - 160 revs/s (30) 
Obviously both offer the prospect of a significant degree 
of spin, especially the latter. The differences in critical 
angles for non-spin and uncontrolled spin projectile 
should be, ifoa/u - 

A 9 c 5 . - - 4 0 - 2  1 1  am 
9, 14 u 

from (26); - 

and from (24); 4 - ( k y 4  - 4 . (32) 
9, U 

These compare with a difference in observed critical 
impact angle of 17 per cent, i.e., 1 degree in 6 degrees. 

6 CONCLUSIONS 

To determine the conditions under which rigid projec- 
tiles ricochet from a liquid surface leads to a difficult 
impact problem in unsteady flow fluid mechanics. 
Though the phenomenon itself is well known and has 
been employed militarily for at least some centuries ( l ) ,  
theory to account adequately for the interrelationships of 
the various parameters has only been achieved recently. 
Previous investigators have usually been concerned with 
the effects of the translational speed of the projectile and 
only the paper by Hutchings endeavours to theoretically 
assess the effect of rotational speed. The effects of spin 
and weight on projectile performance can be large, as 
was shown by Barnes Wallis's spinning bouncing bomb, 
and thus these specific factors are indeed important. 

The work described above assesses the effect of rota- 
tion and weight and results are derived which are be- 
lieved to be more soundly based than those of Hutch- 
ings; for this reason they should be more reliable than 
his. We have endeavoured to test the validity of our 
expressions against such meagre physical evidence as 
exists and believe it shows them to credibly represent 
observed behaviour. However, detailed experimental 
work on ricochet aimed particularly at elucidating the 
effects of spin and weight and seeking to assess the accu- 
racy of all the various expressions now given is necessary. 
This will represent a difficult investigation, however, but 
would appear to be the essential next step if the subject is 
to be advanced. 
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