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&WRACT 

A THEORE~CAL description of thermo-plastic instability in simple shear is presented in a system of equations 
describing plastic deformation, the first law of thermodynamics and Fourier’s heat transfer rule. Both 
mechanical and thermodynamical parameters influence instability and it is shown that two different modes of 
instability may exist. One of them is dominated by thermal softening and has a characteristic time and length, 
connected to each other by thermal diffusion. 

A criterion combining thermal softening, current stress, density, specific heat, work-hardening, thermal 
conductivity and current strain rate is obtained and practical implications are discussed. 

NOTATION 

Euler coordinates 
Lagrangian coordinates 
Cauchy stress tensor 
plastic work 
heat 
Tayor-Quinney coefficient 
displacement 
shear strain 
shear stress 
temperature 
density 
heat flux 
internal energy per unit mass 
specific heat 
thermal conductivity 
work hardening 
strain-rate hardening 
thermal softening 
wave number 
reciprocal of characteristic time 

1. INTRODUCTION 

IT HAS been established that a localization of plastic flow in shear can occur, which is 
closely connected with the heat generated by plastic deformation. Some investigators, 
such as ROCERS (1979), call this “adiabatic shear instability”, although the phenomenon 
may include heat transfer during the course of deformation. This catastrophic shear is 
quite significant, especially for ductile fracture. 
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CULVER (1973) and SPRETNAK (1968) have proposed criteria for instability based on 
the condition 

da = 0 (1.1) 

where c is the current flow stress. Another unpublished analytic work, by R. J. Clifton, 
has been concisely cited in a paper by COSTIN, CRISMAN, HAWLEY and Dippy (1979). 

Here, from the viewpoint of instability, a theoretical analysis is derived from a system 
of equations describing plastic deformation, the first law of thermodynamics and 
Fourier’s law of heat conduction, in order to obtain a comprehensive and precise 
picture of the instability phenomenon. 

2. ASSUMPTIONS 

In this section a series of assumptions is presented to clarify the problem and give the 
analysis a rigorous base. 

Assumption 1 

The relationship between the plastic work W, and the heat 4 produced by it, is as 
follows (TA~LXIR and QUINNBY, 1934) 

4 = KW,, (2.1) 

where K N 0.9. The remaining portion (1 - K) W, remains latent in the metal. 

Assumption 2 

Because the elastic deformation energy is much smaller than that due to plastic 
deformation, the former may be neglected. Thus, 

W, = W = j l;iai,j dt, (2.2) 

where Tj are the components of the Cauchy stress tensor, Xi are Eulerian coordinates 
and the dot signifies the material (Lagrangian) time derivative. 

Assumption 3 

We confine ourselves to the simple geometrical configuration and deformation 

Xl = @1,X2)+x1, 

x2 = x2, 
I 

I 

(2.3) 

x3 = x3, 

where u is the displacement in the x1 direction and Xi are the Lagrangian coordinates. 
This implies that deformation can only occur in one direction but may have a gradient in 
the other direction. 
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For the deformation, a further assumption is made. This is that the normal strains 
are very small, so that 

Shear strain is denoted as 

at4 
y=ax,. (2.5) 

Assumption 4 

Some general assumptions concerning the constitutive relation are proposed : the 
material exhibits no strain-rate history effects and is incompressible and isotropic. 

In the case of simple shear mentioned above, the constitutive relation can be 
expressed as 

T,z = f(r,%@; j T,, dy), 

T,, = &,3,e; JG dy), I 

J 
(2.6) 

T,, = WY, 5 8 ; s T,, dy, 
and the equation of motion implies 

(2.7) 

Assumption 5 

Heat conduction is governed by Fourier’s law 

hi = -ne,, (2.8) 

where hi are the components of heat flux, 0 is the temperature and 1 is the thermal 
conductivity. Therefore, the energy equation becomes 

K@ = pc&IAO, (2.9) 

where A is the Laplace operator. In the case concerned, 

(2.10) 

Assumption 6 

Similarly to the Prandtl boundary layer hypothesis, it is supposed that characteristic 
scales L,,, L,, satisfy 

LX, D LX,. (2.11) 
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This means that the variation of state variables in the x2 direction is much steeper than 
that in the x1 direction and gives, to lowest order, 

Finally, we obtain 

(2.13) 

using the notation r = Z’,, and y = x2. 
To conclude this section, there are three points that should be emphasized. Firstly, 

examining all of the assumptions, it can be seen that the system of equations (2.13) can 
deal with large shear deformation, because no limitation on shear deformation has 
been introduced. Secondly, the first equation in (2.13) is basically a wave equation, but 
the right-hand side of the second is a typical diffusion equation. These two different 

types of phenomena are coupled through the term Kr $. This is the distinctive feature 

of the phenomenon under consideration. Finally this system of equations is obviously 
non-linear. 

HOPKINS (1972) has pointed out that the question of the nature of the mathematical 
structure of the equations governing plastic flow is of crucial importance. The normal 
treatment of the problem tends to be complicated when either a large number of low- 
order equations or a small number of high-order equations is involved. Nevertheless, 
he has outlined the mathematical structure of a set of first-order partial differential 
equations by the method of characteristics. As for the governing equations (2.13), 
because of the mathematical difficulty mentioned abve, attention here is focused on the 
occurrence of instability. The perturbation method, which is widely used to deal with 
the ccurrence of instability in fluid dynamics, for instance see LIN (1955) and LANDAU 
and LIFSHITZ (1959), is adapted in following sections. 

Then the problem is to find the condition under which a smooth deformation process 
changes into catastrophe. Therefore, instead of a steady state, a smoothly developing 
deformation state yO, rO, OO is taken as base-line which is a solution of equations (2.13). 
We then examine what will happen, if a perturbation is superimposed on it. It will be 
shown in the next section that in this simple shear case only the current state 
parameters and their derivatives, which are governed by the “local structure” of the 
constitutive relation, control the instability phenomenon, even though the constitutive 
relation (2.6) could have a rather general form and be rate and strain-history 
dependent. 
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3. tiLUTION 

The perturbation method is used to treat the preceding 
suppose that 

Y =Yo+Y’; Y’<<YO, 

r=rc+z’; Z’<<Z& 

e=&)+lY; @<<8,, 

where y,,, zO, O,, is a solution of the system (2.13), and 

yl = y* ,=t+iky, 

rl = r* eaf+iky, I 

& = tI* eti+ury. I 
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system of equations. We 

(3.1) 

(3.2) 

Then, substituting y’, r’ and 9’ into equation (2.13), we obtain 

82y’ a2+ 
p,,,=,,,, 

1 

or 

pci2y, + k2r, = 0, 

Kz,ay, + Kj,z, -+x,0: + lk2M& = 0, 

because of the relations 

aye dro . 87, dye . -=---_-~--_yyO. 
at dt ax dt 

Differentiating the constitutive relation (2.6), we obtain 

dz = Q. dy+RO dy-PO de, 

where 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

aZ 
PO = - -jj o, 0 

or 

z* = Qoy* +Roay, --PO& (3.8) 



200 Y. L. BAI 

Q,,, R, and P,_are work hardening, strain-rate hardening and thermal softening 
respectively. 

Then the homogeneous system of equations 

[pa2 +(Qo + Roa)k2]y, - P,k28, = 0, 

[Kz,a+ K&(Q,, + R,a)]y, - [Kv,P, + pcva + lk2]8, = 0 I 
(3.9 

is obtained. Since the determinant of the coefficients should be equal to zero, this leads 
to 

p2c,a3 +P[KP,,~~ +(l+c,R,)k2]a2 +(AR,k’ +pc,Q,-Kz,P,)k2a+1Qok4 = 0. 
(3.10) 

This is the spectral equation. If a has a positive real root, it implies that instability is 
possible. 

In equation (3.10), c,, 1 and R. are positive, generally. If there is work hardening, so 
that Q. > 0, a necessary condition for a positive root a of (3.10) is a negative coefficient 
of a. Hence, if PO = 0, no instability can occur. 

Rearranging, using the dimensionless variables 

la 
a=- 

GQO' 
g2 = 12k2 

m 
*+, KroPo B=-, 

PGQO 
C KAPo”3o 
=PCV2Q02 1 

(3.11) 

reduces the spectral equation to the form 

a3+[c+(l+A)R]~~+[AE~+l-B]Pa+F=o. (3.12) 

Now we discuss the two extreme situations : 

(i) For long wavelengths (k -+ 0), the solutions of the spectral equation (3.10) are 

a = 0, 

a = KPojo. 
I 

1 

(3.13) 

PC” 

Then it is deduced that shear deformation is always stable. 
(ii) For short wavelengths (k + co), the only finite solution is 

Qo a= --. 

Ro 
(3.14) 

Shear deformation is again always stable. But we have seen that there is certainly a 
negative term -Kr,P,k’a which may lead to instability. Therefore, if instability 
occurs, it must occur at a special set of wavelengths or wave numbers. It is of interest, 
therefore, to seek the wave number k, for which the corresponding a,,, > 0 is a 
maximum. In addition to the spectral equation (3.12), E,,, and 8, have to satisfy the 
equation 

(3.15) 



Thermo-plastic instability in simple shear 201 

that is, 

R _ _ (B-I)-(A+%,, 
m - cl, 2(A&,,+ 1) * 

(3.16) 

Keeping & > 0 in mind, we arrive at an important inequality to determine the limit of 
the Z,,, value : 

O<G=< 
B-l “* 
~+1= a,. (3.17) 

Combining both the spectral equation (3.12) and the extreme condition (3.16), we get 
the equation 

F, = F, (3.18) 

to determine Z,,,, where 

F1 = 4(Ao?, + l)(&,,, + C), (3.19) 

F, = [(l +A)&,-(B-1)12 = (1 +A)‘(&,,-Pd2. (3.20) 

The last equality in (3.20) defines the parameter a$ 

4. Two MODFSOF~NSTABILITY 

It may be seen from the diagram of F,,, vs ti,,, (Fig. 1) that for the region &,,, > 0, the 
left branch of function F, and the right branch of F1 must have an intersection between 
0 and a% as long as 

B > 1+,/(4C). (4.1) 

This inequality is a criterion for the existence of a solution Z,,,, and therefore is the 
criterion we desire. In many cases, it is true that C << 1; the criterion for instability then 
simplifies to 

B>l (4.2) 

or 

KroPo * ->l. 
PGQO 

(4.3) 

This means that the thermal softening caused by plastic work overcomes the work 
hardening of the material. It is very interesting to point out that whether instability 
occurs or not is not related to the thermal conductivity L, strain-rate hardening R. and 
current strain rate & However, these factors influence instability markedly in some 
other aspects which will be explained later. 

The intersection a,,, in Fig. 1 and the corresponding value of &, represent the most 
probable unstable solution. The solution di, has the same order as al. 

Hence, for qualitative discussion, the value of e can be used to represent the point of 
intersection Em. 
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(B-11 

FIG. 1. Plots of the functions F,, F,, defined in equations (3.19) and (3.20). 

If A >> 1, then 

__* B-l 
N- 

111 A 

and the characteristic time 

1 1 1 
rc,-,-- 

a, GQO 4, 
A A 

a---- 
GQO B-1 

RX PC” 

- jo KroPo-PGQO’ 

(4.4) 

(4.51 

It is clear that the characteristic time r, is alfected by strain-rate hardening; strain-rate 
and the extent to which the phenomenon concerned is past instability. Emphasis 
should be placed on the current strain rate f. which influences the characteristic time 
rather strongly. In high strain rate testing the time decreases very rapidly. This might be 
one of the reasons for thermo-plastic shear instability at high strain rates. 



Thermo-plastic instability in simple shear 

The characteristic length 1, is related to r, by 

203 

(4.6) 

where a is the thermal ditfusivity which equals A/PC,. Here, lc is the pattern length rather 
than the thermal diffusion length lo which is connected with time t by (lg/t) - a. 

Two interesting special cases are adiabatic deformation and no work hardening. 

(i) Adiabatic conditions, 1 = 0 

In this case the spectral equation (3.10) has the form 

p2c,a2 +P[KP,~, +c,Rok2]a - [Kz,P, -pc,Q&’ = 0. (4.7) 

If Kz,P, > pcvQo, namely B > 1, it is certain that c1 has a positive root and instability 
must occur. But the equation (d2a/dk2) = 0 leads to 

a.=&B-1), (4.8) 
0 

km= OS. (4.9) 

This means that the characteristic length approaches zero in the adiabatic case. 
It is important to appreciate that the same formal criterion (4.2) can be used whether 

the instability is adiabatic or not. 

(ii) No work hardening, Q. = 0 

The spectral equation (3.10) becomes 

p2c,a2 +p[KP,j, +(1+c,Ro)k2]a+(rZRok2 -K~,Po)k2 = 0. (4.10) 

If 

Kr,P, > 1Rok2, (4.11) 

a must have a positive real root and instability will occur. In this criterion the product 
of the thermal conductivity, the strain-rate hardening and the square of the wave 
number plays the role which work hardening played previously in (4.2). The equation 
(d2a/dk2) = 0 leads to 

k2 = KroPo - PQ + c,RO)am 
RI 2LR, 

and 

0 < a, < KToPo 
P(l+c,R,)’ 

Combining equations (4.10) and (4.12), we have the following equation for a,,,. 

1 

2 

. 

(4.12) 

(4.13) 

(4.14) 
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There must be a solution for a,,, between 

0 and a: = R@, 

p(l+ c,R,) ’ 

satisfying the instability criterion (4.11). 
In this case, the characteristic time is 

1 

tc N z N 
p(l+c,R,) N F”R,* 

Kr,P, );oRr,R, 
(A >> 1). (4.15) 

This is the same result as in the case of Q,, > 0. 
Now it is proper to outline the instability mode caused only by thermal softening PO. 
Whether Q. > 0 or Q. = 0, there exists a type of shear instability which is dominated 

by thermal softening. The criterion for the instability mode is formulated in the 
inequality (4.1). 

Only in the case of Q. = 0 is there another criterion in which strain-rate hardening 
emerges explicitly to resist the occurrence of shear instability, instead of work- 
hardening. 

This instability mode is characterized by a characteristic wavelength and time 

R,* t, - - 
PC” 

lie KzoPo - PGQO ’ 
It is clear that strain-rate hardening R,* and the current strain rate j. explicitly 

influence the time t,. Owing to the wide range of jo, it can be imagined that at high strain 
rates the delay time can be greatly shortened. This may be one of the causes of the 
common occurrence of shear instability in dynamic loading regimes. 

The characteristic time and length are connected by thermal diffusion and this type 
of instability is theoretically not necessarily adiabatic. 

We turn now to the second mode of shear instability, supposing that there is no 
thermal softening, i.e. PO = 0. In this case we can formulate the spectral equation : 

p2c,a3 + p(l +c,Ro)k2a2 + (rlR,k’ + pc,Qo)k2a + ilQok4 = 0. (4.16) 

The parameters 1 and R, must be positive; however this is not so for Qo. Therefore, 
Q. < 0 may become another possible cause of instability even though it is not certain 
that Q. < 0 for isothermal deformation. We rewrite the spectral equation (4.16) in the 
form 

p2c,a3+p(l+C,Ro)k2a2+AROk4a = pc,~Qolk2a+IIQo)k4. (4.17) 

It is easy to see that there must be a solution a > 0; therefore flow must be unstable. 
It is very simple to show that no maximum in a exists and a is a monotonically 
increasing function of k, with 

lim a = 0, (4.18) 

li:i - 'Qol 
Ro' 

(4.19) 
k-rao 

R,* lim t = tmin = -. 

k-+m lie IQol 
(4.20) 
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This implies that the shorter the wavelength, the earlier the occurrence of instability 
and the shortest characteristic time is dominated by the current strain rate &. This is 
nearly the same as the time in the first mode. 

Nevertheless, this is a totally different instability mode. There is no further criterion 
except Q. < 0, with which, as we have seen, are associated no characteristic length and 
time. There only exists a minimum time rmln. 

Obviously, there might exist mixed instability modes (PO > 0, Q. < 0) also. No 
further criteria are needed except for Q. < 0. Using the same procedure, it can be 
verified that E,,, exists when C << I, A >> 1. 

5. &tACTICAL CRH'ERION 

Now we can concentrate on the instability mode dominated by thermal softening 
only, but turn to practical considerations. 

The first step is to estimate the dimensionless quantities A and C. For most metals, 
the relevant parameters have the following orders. 

P - 10’ g cm-s, c, - 10’ erg g-i (C)-l, 

1% 10’ cal cm-’ s-r (DC)-‘, PO - 10’dyn cm-* (“C)-‘, (5.1) 

Q. - lo9 dyn cmm2, R,* - 10’ dyn s cm-2. 

These lead to 

c,Ro 10’ 

A d 
--NT>> 1, 

Yo 
C =pojo 

! 

(5.2) 
--- 10-iOjo<< 1, 

PC,’ Qo 
where the unit of strain rate is s-l. 

This is the base on which we deduced criteria (4.2), (4.3), etc. A >> 1 and C << 1 mean 
that when Q. > 0 the effect of heat conduction on the occurrence of shear i~tability is 
small and it is possible to neglect it formally. 

It is especially useful that criterion (4.2) implies a strain criterion. Recalling [Qo] 
= stress/strain, we can easily deduce that the inequality (4.2) is equivalent to a strain 
criterion. It is desirable to establish a criterion connecting state parameters and 
material constants on each side ofthe inequality. Strain, obviously, is a state parameter. 
So there must exist a d~ensionl~ ~mbination of material cortstants implying a sort 
of strain to identify a special resistance of the material to shear instability. 

Supposing PO = const., we can formally define such a critical strain, regardless of 
constitutive equations, 

y* = 3. ) yrz = -5 
Qo KPO 

Certainly, y* = xo/Qo is by no means a true strain, but its meaning is obvious physically 
and geometrically from Fig. 2. 
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FIG. 2. Graphical interpretation of the parameter y+, detined in equation (5.3). 

If the stress-strain curve is convex and the work hardening Q. > 0, y* must be an 
increasing function of yo, because r. increases and Q. decreases with increasing yo. 
Therefore, at a certain strain, (5.3) will be satisfied and instability occurs. Of course, here 
yli is rather large, so, if the material constants p, c, K and PO are on hand and the 
relationship of r and y is known numerically or graphically, this is a convenient way to 
judge the occurrence of shear instability. 

.&cause Y* = (~o/Qo) is not a true strain or a genuine state parameter-on the 
contrary, y* is implicitly controlled by the constitutive relations of materials-it is 
desirable to derive a genuine critical strain. If the constitutive relation of the material 
concerned is formulated explicitly, the critical strain is easy to obtain Suppose, for 
instance, 

T= G?r” (5.4) 

where G and n are material constants. Then, the critical strain is 

wc, 
Yo ’ Yi2 = KP,’ (5.5) 

s=z,+Gy, (5.6) 

yo > yi3 = gp - g. 
0 

(5.7) 

For most metals,‘the critical strain for the occurrence of shear instability may be 
approx. unity or less (CvLvw, 1973). 
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6. CONCLUSIONS 
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It has been shown that there may exist two possible i~tab~ti~ in simple shear 
deformation. One is dominated by thermal softening, the other by “work-softening”. 
For the former there is a characteristic time and length. 

Generally, the criterion for the first mode of shear instability combines thermal 
softening, current stress, density, specific heat and work-hardening, and is not related to 
heat conduction explicitly. Thermal diffusivity connects the characteristic time and 
length directly in this instab~ity phenomenon. Strain-rate hardening and current strain 
rate strongly affect the time during which the instability develops fully. 

The above criterion implies a practical critical strain Wben the constitutive relation 
has an explicit expression, the critical strain can be described simply. 
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