• 首 页
  • 机构概况
    • 机构简介
    • 组织机构
      • 科研系统
      • 管理系统
      • 支撑系统
    • 所党委
    • 行政领导
    • 历任党组织负责人
    • 历任行政领导
    • 学术委员会
    • 学位委员会
    • 形象标识
    • 所内风光
      • 中关村园区
      • 怀柔园区
      • 落塔
      • 科学家精神
      • 文体活动
  • 科学研究
    • 研究领域
    • 合作交流
    • 科研进展
    • 仪器设备
    • 科研产出
      • 获奖
      • 专著
      • 论文
      • 专利
  • 人才队伍
    • 人才概况
    • 两院院士
    • 正高级岗位
    • 副高级岗位
    • 优秀人才
      • 国家级领军人才
      • 国家级青年人才
      • 中国科学院青促会
      • 创新团队
      • 优培计划
  • 教育培养
    • 机构简介
    • 导师队伍
    • 招生就业
    • 培养学位
    • 思想政治教育
    • 通知公告
    • 研究生教育
  • 党群园地
    • 党组织机构
      • 所党委
      • 所纪委
      • 党支部
      • 工会
      • 团委
      • 妇委会
    • 党建要闻
    • 基层战斗堡垒作用
    • 党员先锋模范作用
    • 工作通知
    • 学习园地
    • 规章制度
    • 警示教育
    • 流程指南
    • 协力原创文章
      • 党员随笔
      • 创新驱动发展
      • 力学人
    • 党员主题教育基地
  • 科学传播
    • 学术期刊
    • 科普资源
    • 力学园地
      • 科普花园
      • 前沿动态
      • 情系科学
      • 释疑解惑
      • 精彩图片
    • 科普报告
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 依申请公开
      • 公民
      • 法人/其他组织
    • 信息公开年度报告
      • 预算决算
    • 信息公开联系方式
  • 中科力森
    • 关于力森
    • 主体业务
      • 国资监管
      • 成果转化
      • 知识产权运营
      • 投资
    • 产业布局
      • 持股企业
      • 事业部
      • 产品介绍
      • 科技成果
        • 航空航天
        • 生命健康
        • 交通能源
        • 先进制造
        • 专业软件
    • 新闻资讯
      • 力森要闻
      • 持股企业动态
    • 招聘信息
      • 岗位信息
      • 持股公司
    • 联系我们
  • 怀柔园区
    • 基地概况
    • 动态信息
    • 通知公告
    • 科研团队
    • 管理制度
    • 流程指南
    • 基础服务
    • 周边配套及景点
    • 联系我们
    • 图片新闻
    • 科研进展
    • 全文检索
    • 大型装备
    • 园区简介
    • 配套设施
    • 联系我们
  • 基础科学中心
    • 中心简介
    • 工作动态
    • 科研进展
    • 会议通知
    • 人才队伍
      • 核心骨干
      • 青年人才
    • 快讯
  • 媒体扫描
  • 综合信息
  • 通知公告
  • 学术交流
  • 招聘信息
  • 仪器设备
  • 专题报道
  • English
  • 所内网
  • 邮箱登录
  • 所长信箱
  • 联系我们
  • English
  • 所内网
  • 邮箱登录
  • 所长信箱
  • 联系我们
  • 首 页
  • 机构概况
    • 机构简介
    • 组织机构
      • 科研系统
      • 管理系统
      • 支撑系统
    • 所党委
    • 行政领导
    • 历任党组织负责人
    • 历任行政领导
    • 学术委员会
    • 学位委员会
    • 形象标识
    • 所内风光
      • 中关村园区
      • 怀柔园区
      • 落塔
      • 科学家精神
      • 文体活动
  • 科学研究
    • 研究领域
    • 合作交流
    • 科研进展
    • 仪器设备
    • 科研产出
      • 获奖
      • 专著
      • 论文
      • 专利
  • 人才队伍
    • 人才概况
    • 两院院士
    • 正高级岗位
    • 副高级岗位
    • 优秀人才
      • 国家级领军人才
      • 国家级青年人才
      • 中国科学院青促会
      • 创新团队
      • 优培计划
  • 教育培养
    • 机构简介
    • 导师队伍
    • 招生就业
    • 培养学位
    • 思想政治教育
    • 通知公告
    • 研究生教育
  • 党群园地
    • 党组织机构
    • 党建要闻
    • 基层战斗堡垒作用
    • 党员先锋模范作用
    • 工作通知
    • 学习园地
    • 规章制度
    • 警示教育
    • 流程指南
    • 协力原创文章
      • 党员随笔
      • 创新驱动发展
      • 力学人
    • 党员主题教育基地
  • 科学传播
    • 学术期刊
    • 科普资源
    • 力学园地
      • 科普花园
      • 前沿动态
      • 情系科学
      • 释疑解惑
      • 精彩图片
    • 科普报告
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 依申请公开
      • 公民
      • 法人/其他组织
    • 信息公开年度报告
      • 预算决算
    • 信息公开联系方式
  • 首 页
  • 机构概况
    • 机构简介
    • 组织机构
    • 所党委
    • 行政领导
    • 历任党组织负责人
    • 历任行政领导
    • 学术委员会
    • 学位委员会
    • 形象标识
    • 所内风光
  • 科学研究
    • 研究领域
    • 合作交流
    • 科研进展
    • 仪器设备
    • 科研产出
      • 获奖
      • 专著
      • 论文
      • 专利
  • 人才队伍
    • 两院院士
    • 正高级岗位
    • 副高级岗位
    • 中级及以下岗位
    • 优秀人才
      • 国家级领军人才
      • 国家级青年人才
      • 中国科学院青促会
      • 创新团队
      • 优培计划
    • 人才招聘
  • 教育培养
    • 机构简介
    • 导师队伍
    • 招生就业
    • 培养学位
    • 思想政治教育
    • 通知公告
    • 研究生教育
  • 党群园地
    • 党组织机构
    • 党建要闻
    • 基层战斗堡垒作用
    • 党员先锋模范作用
    • 工作通知
    • 学习园地
    • 规章制度
    • 警示教育
    • 流程指南
    • 协力原创文章
      • 党员随笔
      • 创新驱动发展
      • 力学人
    • 党员主题教育基地
  • 科学传播
    • 学术期刊
    • 科普资源
    • 力学园地
    • 科普报告
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 依申请公开
    • 信息公开年度报告
    • 信息公开联系方式
  • 当前位置:首页科学研究科研进展
  • 科研进展

    用于液滴机械能收集的摩擦压电复合纳米发电机研究

    作者:苏业旺发布时间:2022-12-13【字体: 大  中  小 】

    随着社会的快速发展,人们对能源的需求越来越高。由于化石能源日益枯竭,开发和利用可再生能源变得愈加紧迫。水能作为最丰富的可再生能源之一,在能源供给上发挥着不可或缺的作用,目前最主要的途径是建立在河流上的水电站通过电磁发电机将水的势能转换为电能。除了含水量巨大的河流之外,水能还包括数量众多体积微小的水滴。如果能对水滴能充分利用,对可再生能源是一个有力的补充。

    2012年研究者首次提出了基于摩擦起电和静电感应的摩擦纳米发电机(TENG)。TENG由于易于制造和材料选择广泛在微纳能源领域显示出了巨大的应用前景。TENG不仅可以用于收集固固接触中的机械能,还可以用于收集液固接触中的机械能。2014年首次出现了基于液固TENG的水滴发电机,为有效收集水滴能量开辟了新路径。需要说明的是,这类传统的水滴发电机的电极全部位于介电层的下方。2020年受晶体管的启发,人们提出了新式的水滴发电机设计,其在介电层的上方加了顶电极。通过将传统的界面效应转化为理想的体效应,新式水滴发电机的信号与传统的相比有了很大的提升。然而这些水滴发电机并没有充分收集水滴的机械能,具体来说,它们收集了水滴液固接触的机械能,但没有收集基底的变形能。

    近日,中科院力学所苏业旺研究员团队与中科院北京纳米能源与系统研究所杨亚研究员团队合作,提出了新的设计策略:通过同时收集水滴液固接触的机械能和基底的变形能来提高水滴发电机的电流(如图1所示)。根据该策略,制备了水滴复合纳米发电机(TPiHNG)。通过实验对比,选择了电学响应信号更优的悬臂梁结构作为TPiHNG的结构。利用有限元分析,确定了压电材料的安装方向。相对于单独的TENG,TPiHNG的电流有了明显的增大(如图2所示)。通过调整水滴的滴落位置来调控PiENG与TENG的响应时间差(如图3所示)。研究了不同变量对TENG、PiENG、TPiHNG的电流以及PiENG与TENG的响应时间差的影响。这项工作为更有效地收集水滴能量提供了新的路径。

    该工作近期发表在国际权威期刊Nano Energy (https://doi.org/10.1016/j.nanoen.2022.107992)。论文第一作者是在读博士生张懋熠,中科院力学所苏业旺研究员和中科院北京纳米能源与系统研究所杨亚研究员为共同通讯作者。该工作得到了国家自然科学基金委、中国科学院从0到1原始创新计划和中国科学院交叉学科创新团队等项目的支持。

    图1 TPiHNG的设计和结构。(a)TPiHNG的设计策略。(b)TPiHNG的结构图。(c)两种设计结构。两种结构下(d)PiENG和(e)TENG的电流对比。

    图2 TPiHNG的电学性能。(a)TENG、(b)PiENG和(c)TPiHNG的电流。(d)TENG、(e)PiENG和(f)TPiHNG的单个电流波形。(g)TENG、(h)PiENG和(i)TPiHNG的电流功率图。

    图3 PiENG与TENG的响应时间差的影响和水滴撞击位置对TPiHNG电学性能的影响。(a)PiENG与TENG的响应时间差对TPiHNG电流波形的影响。(b)水滴撞击位置对(c)TENG、PiENG、TPiHNG的电流和(d)PiENG与TENG的响应时间差的影响。

    原文链接:https://doi.org/10.1016/j.nanoen.2022.107992


    附件下载:

    上一篇:力学所揭示玻璃态物质年轻化新机制
    下一篇:可拉伸无机柔性电子在不同界面条件下一致性工作的尺寸设计原理
    版权所有 © 中国科学院力学研究所 京ICP备05002803号-1 京公网安备110402500049
    地址:北京市北四环西路15号 邮政编码:100190